The Rocket **Science Behind** the Martin Space Rule and Handbook

Will Marchant, UC Berkeley Space Sciences Lab

Context 1962

Batch computing

Small signs of personal computers

1962-02-20 John Glenn

(1 year after Gagarin)

1962-04-26 Lockheed A-12

Date ¢	Place ¢	Event
1960	USA EUR	ALGOL, first structured, procedural, programming language to be released.
1960	UK	Compiler compiler, first compiler compiler is released.
1961	USA	APL programming language released by Kenneth Iverson at IBM.
1961	USA	The AN/UYK-1 (TRW-130) computer was designed with rounded edges to fit through the hatch of ballistic missile submarines, as part of the first satellite navigation system, Transit.
1961	USA	Molecular Electronic Computer, first integrated circuits general-purpose computer (build for demonstration purposes, programmed to simulate a desk calculator) was built by Texas Instruments for the US Air Force. ^[4]
1962	UK	ATLAS is completed by the University of Manchester team. This machine introduced many modern architectural concepts: spooling, interrupts, pipelining, interleaved memory, virtual memory and paging. It was the most powerful machine in the world at the time of release.
1962	USA	Work begun on the LINC, the brainchild of the M.I.T. physicist Wesley A. Clark in May 1961. It was the first functional prototype of a computer scaled down to be optimized and priced for the individual user (about \$43,600 - equivalent to \$368,500 in 2019). Used for the first time at the National Institutes of Mental Health in Bethesda, Maryland in 1963, many consider it to be the first personal computer, despite the big dimension of some elements, e.g. the memory rack. ^[5]
1962	USA	Spacewar!, an early and highly influential computer game, is written by MIT student Steve Russell. The game ran on a DEC PDP-1, competing players fired at each other's space ships using an early version of joystick.
1963	USA	Mouse conceived by Douglas Engelbart ^[citation needed] The Mouse was not to become popular until 1983 with Apple Computer's Lisa and Macintosh and not adopted by IBM until 1987 – although compatible computers such as the Amstrad PC1512 were fitted with mice before this date.

Wikipedia: https://tinyurl.com/yy5oprdh

Your Martin Space Rule is an instrument specifically designed to aid the <u>student</u> of astronautics and the <u>skilled engineer</u> in solving preliminary design problems that are most frequently encountered in several space flight technological areas.

The only prerequisites for the use of the *Rule* are a familiarity with the basic slide rule and a rudimentary understanding of rocketry.

Your Martin Space Rule was originally conceived by Michael Stoiko and subsequently developed to its present status jointly with Werner Furth. Both men are engineers at Martin's Space Systems Division.

The Authors - Selected Highlights

Michael Stoiko (1919-2010)

- WW-2 Marine aviator
- Aerospace engineer
- Authored 12 books on rocketry
- Advocated international cooperation in space
- Led the Advanced Space Vehicle team at Martin (later Lockheed Martin)
- Worked on the Gemini space program
- -F. N. Rasmussen, The Baltimore Sun, 2010

Werner Furth (1930 - 2012)

- Engineer at Martin's Space Systems Division
- Worked on energy systems at Martin Marietta
- Lead author on a Martin Marietta Environmental Energy Plan

-WorldWideScience.org

The Authors - Who were they?

Michael Stoiko

Nothing can keep man from exploring space; the trend in history is unmistakenly toward interplanetary travel.

-Michael Soiko, Soviet Rocketry, 1970

Werner Furth

A brilliant mind, coupled with a keen sense of humor, witty poems, equations on the blackboard, ink stains on his shirt, cigar ashes everywhere, his slogan of "Furth things first...." -Anne Torres, remembrance, 7/23/2012

Planets "suck"

Newton's Cannonball

Leaving the atmosphere is expensive

https://en.wikipedia.org/wiki/Orbit

It's All About Velocity

Efficiency is crucial

Sadly, no "space drives"...

Earth's rotation can help or hurt

Earth's orbit around the Sun can help or hurt

"Characteristic Velocity" is a total "cost" of a mission

https://en.wikipedia.org/wiki/Hohmann_transfer_orbit

Big Rockets...

Tsiolkovsky rocket equation:

dV = Isp G0 In(m0 / mf)

Is the change in velocity from expending propellant and depends upon the efficiency of the propellant.

Isp is "specific impulse" efficiency

G0 is gravitational constant of ~9.8m/s^2

M0 is initial mass

Mf is final mass

- Space Shuttle SRB: 250
- Shuttle Main Engine: 450
- Nuclear Thermal: 850
- Ion Thruster: 3000
- VASIMIR: 12000

https://solarsystem.nasa.gov/news/337/what-was-the-saturn-v/

https://www.sliderulemuseum.com/Aristo/Aristo_80123_MartinSpaceRule_1962_RodLovetteCollection.jpg

The Front Scales

Conventional C and D with slide front

Mass fraction and booster design on front

Up to four stages

$\begin{array}{c} \lambda \\ k_{4} \\ m \\ k_{4} \\ m \\ m \\ k_{5} \\ k_{6} \\ m \\ m \\ k_{6} \\ m \\ m \\ k_{6} \\ m \\ m \\ k_{6} \\ m \\ k_{6} \\ m \\ $	and the second	ARISTO ARISTO	and the owner of the owner.
K4 ^m ¹⁰⁰⁰⁰⁰⁰ ¹⁰⁰⁰⁰⁰ ¹⁰⁰⁰⁰⁰⁰ ¹⁰⁰⁰⁰⁰⁰ ¹⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰	λ	125 13 14 15 15 17 18 19 2 2.5 3 4 5 6 7 8 9	1.0
K3 ************************************	K4		
K2 10000 200 100 50 20 100 50 20 10 54 3 20 10 54 3 21 15 14 14 14 2 30 14 14 14 2 10 14 14 14 14 14 14 14 14 14 14 14 14 14	K3		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	K ₂	200 100 200 100 50 20 10 5 4 3 2 15 15 15 10 10 10 10 10 10 10 10 10 10 10 10 10	
I sp sec. 150 200 250 300 400 500 600 700 800 900 100 1200 1300 100 1200 1300 100 1200 1300 100 100 1200 1300 100 100 100 100 1200 1300 100<	K1	- มี. มีว. จึงคนไปปพบสนทั้งแต่นการเป็นแปกการบังงงส่งหนดอีก นการการการการการใกลกสังหนดไม่แหล่งและสังหนุปกลางไม่การกา	
Ko Interference 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 10 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 150 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 150 16 17 18 19 2 21 22 25 3 4 15 16 17 18 19 2 21 22 23 24 25 26 27 28 9 10 <t< td=""><td>l sp sec.</td><td><u>150 200 250 300 400 500 600 700 800 900 1000 1100 1200 1300</u></td><td>00</td></t<>	l sp sec.	<u>150 200 250 300 400 500 600 700 800 900 1000 1100 1200 1300</u>	00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ko		IST 0012
C D 1 11 12 13 14 15 16 17 18 19 2 25 3 mm m m m m m m m m m m m m m m m m m	%Wpr	0 5 10 15 20 25 30 1 1.1 1.2 1.3 1.4 1.5 1.5 1.7 1.8 1.9 2 2.5 3 4 5 6 7 8 9 10	AR AR
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C		
$ \begin{array}{c} K & 5 & 45 & 4 & 5 & 4 & 1 & 35 & 1 & 35 & 1 & 1 & 3 & 1 $	D	1 11 12 13 14 15 15 17 18 19 2 25 3 4 5 6 7 8 9 10	
70 W d 30 20 10 0 0 MF.7 8 9 10	K	5 4.5 4 3.5 3 2.5 2 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.15	
	-70 VV d	30 20 10 0 MF,7 8 9 10	-

The Back Scales

Earth orbit scales on back (mostly) top

Ballistic missile "exterior ballistics" scales on back bottom

(E)ecc.	ในการโทยอยู่ในการนั้นการไม่การนั้นการนั้นการนั้นการนั้นการนั้นการใจการใจการใหญ่ไหนรู้ใหญ่ในการในการในการให้การใ	
Va	25 เป็นหน้าหายให้หายให้มาให้หายให้มายในหน้าหายให้เป็นสินสินสินสินสินสินสินสินสินสินสินสินสิน	
ha	10^{-5}	RTIN
hm	$\frac{5}{1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$	ERULE
τ	1.6 1.7 2 2.5 3 4 5 6 7 8 9 10 15 20 30 50 100 500∞ hr	1762
V1	25 26 27 28 29 30 31 32 33 34 35 36 37 38	10 ³ fps
V2		10 ³ fps
Ri	ີ້ ຈໍ່ມີການກັບບຸດທີ່ການມາດທີ່ການຜູ້ສະຫະຜູ້ສະຫະຜູ້ການເພື່ອນມູກການຫຼື ມີມີມາມູນປະມານມີດັບການກໍ່ມີສະຫຍູພະຫຍູ້ມານມູກພ້າມມູກພ້ານນຶ່ງການຫຼື ຜູ້ນີ້ ຜູ້ພື້ນນຶ່ງການຫຼື ຜູ້ນີ້ ຜູ້ພື້ນນຶ່ງ ຜູ້	10³ st.mi
TRO		degrees
TF		minutes
Ha	$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $	st.mi
hc		10 ³ st.mi

The Slide Back Scales

Interplanetary scales on the slide back

Soft and hard landings!

Gutter has useful reference information

Planet	MERCURY §	VENUSQ	EARTH 🕀	MARSO	JUFITER 24	SATURN ħ	URANUS &	NEPTUNE Ψ	PLUTO P
Escape Vel. (fps)	13,650	33,850	36,700	16,730	200,000	119,100	69,900	76,800	34,500
Radius (st. mi)	1,550	3,846	3,963	2,060	43,480	35,800	15,790	15,545	4,300

The Handbook

1962

Tutorial format, but assumes some background

Lots of examples

CONTENTS

		Page					
	Introduction	iii					
I.	Your Space Rule	1					
II.	Propellant Mass Fraction	7					
III.	Exterior Ballistics						
IV.	Earth Orbital Mechanics						
v.	Booster Design 1						
VI.	Stage Optimization						
VII.	Interplanetary Missions	39					
	Appendices						
	A. Typical Mission Velocity Losses	A-1					
	B. Mass Fraction Determination	B-1					
	C. Elliptical Equations	C-1					

References About the Authors

https://airandspace.si.edu/support/wall-of-honor/michael-stoiko

https://www.baltimoresun.com/bs-xpm-2010-12-24-bs-md-ob-iphone-michael-stoiko-20101223-story.html

https://www.dignitymemorial.com/obituaries/bel-air-md/werner-furth-5164895

https://worldwidescience.org/topicpages/m/martin+marietta+astro.html

Martin Rule References

https://www.computerhistory.org/collections/catalog/102746940

https://sliderules.lovett.com/aristo80123/aristo80123.htm

https://uksrc.org.uk/uksrc/fulldetails.cgi?match=8

https://hpinspace.wordpress.com/2009/09/13/aristo-80123-the-slide-rule-to-have/

Aerospace Slide Rule References

https://www.sliderulemuseum.com/Aerospace.htm

http://www.projectrho.com/public_html/rocket/astrodeck.php#id--Computers--Slide_Rules

https://rc.library.uta.edu/uta-ir/handle/10106/27215

Questions?

https://www.ssl.berkeley.edu/~marchant/